Occurrence and possible roles of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase in peroxisomes of an *n*-alkane-grown yeast, *Candida tropicalis*

Tatsuo Kurihara, Mitsuyoshi Ueda and Atsuo Tanaka

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan

Received 23 December 1987

Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes $(C_{10}-C_{13})$. One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkanegrown cells was similar to that of other enzymes constituting the fatty acid β -oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.

Acetoacetyl-CoA thiolase; 3-Ketoacyl-CoA thiolase; β-Oxidation system; Peroxisome; (Alkane-grown yeast, Candida tropicalis)

1. INTRODUCTION

Peroxisomes are one of the subcellular organelles common to eukaryotic cells and have an essential role in the fatty acid degradation. The peroxisomal fatty acid β -oxidation system is composed of acyl-CoA oxidase coupled to catalase, a marker enzyme of peroxisomes, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3- κ etoacyl-CoA thiolase [1]. This system is different from the mitochondrial one, in which the initial step is catalyzed by acyl-CoA dehydrogenase coupled to the respiratory chain.

In mammalian cells, fatty acids of long chains are degraded to medium chain acyl-CoAs in peroxisomes, which are transported to mitochondria with a carnitine shuttle [2]. Mitochondria serve to degrade the transported medium chain acyl-CoAs to acetyl-CoA, the substrate of the tricarboxylic acid cycle. At the final step of β -oxidation, peroxisomal 3-ketoacyl-CoA thiolase is responsible for

Correspondence address: A. Tanaka, Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan

the degradation of long chain acyl-CoAs, while the mitochondrial enzyme has a broad substrate specificity for the chain length [3,4].

In the case of the *n*-alkane-assimilating yeast, Candida tropicalis, all the enzymes constituting the fatty acid β -oxidation system are exclusively detected in peroxisomes, the results suggesting that fatty acids are completely degraded to acetyl-CoA in peroxisomes [5,6]. Although acyl-CoA oxidase [7] and the bifunctional enzyme, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase [8], have been purified from this yeast and characterized, no information is available on 3-ketoacyl-CoA thiolase participating in the final step of the fatty acid β -oxidation.

This paper deals with the presence of two kinds of 3-ketoacyl-CoA thiolases in yeast peroxisomes (one is specific to acetoacetyl-CoA and the other to long chain 3-ketoacyl-CoAs), and their possible roles in the peroxisomal β -oxidation cycle.

2. MATERIALS AND METHODS

2.1. Cultivation of yeast

C. tropicalis pK 233 (ATCC 20336) was cultivated to the exponential growth phase in a medium containing glucose or an

Table 1

Activity levels of 3-ketoacyl-CoA thiolase in glucose-grown and alkane-grown C. tropicalis on different substrates

Substrate	Thiolase activity (nmol·min ⁻¹ ·mg protein ⁻¹)		B/A
	Glucose-grown cells (A)	Alkane-grown cells (B)	
Acetoacetyl-CoA	43	110	2.6
3-Ketohexanoyl-CoA	0.92	190	210
3-Ketooctanoyl-CoA	3.1	540	170
3-Ketodecanoyl-CoA	5.5	1000	180
3-Ketododecanoyl-CoA	6.5	740	110

Thiolase activity was measured with cell-free extracts

n-alkane mixture $(C_{10}-C_{13})$ as the sole source of carbon and energy [9].

2.2. Preparation of cell-free extracts and subcellular fractionation

Cell-free extracts were prepared by disintegrating the cells

with a Braun cell homogenizer [9]. Protoplasts prepared from n-alkane-grown cells were homogenized with a teflon homogenizer and then fractionated by differential centrifugations [6]. The fractions obtained were as follows; S₂ fraction (20 000 \times g supernatant) composed of cytosol; P₂ fraction (20 000 \times g pellets) consisted of mitochondria and peroxisomes. To separate peroxisomes and mitochondria, P₂ fraction was subjected to a discontinuous sucrose density gradient centrifugation [6].

2.3. Enzyme and protein assay

The activity of 3-ketoacyl-CoA thiolase was measured at 30° C, as described by Staak et al. [10], except that the acetoacetyl-CoA concentration was 40 μ M. Catalase, cytochrome oxidase and protein were assayed by the methods described in [11].

2.4. Chemicals

Acetoacetyl-CoA was purchased from Sigma (St. Louis, MO). All other 3-ketoacyl-CoA compounds were prepared enzymatically from corresponding enoyl-CoAs [12], synthesized by the mixed anhydride method [13]. Other chemicals were obtained from commercial sources.

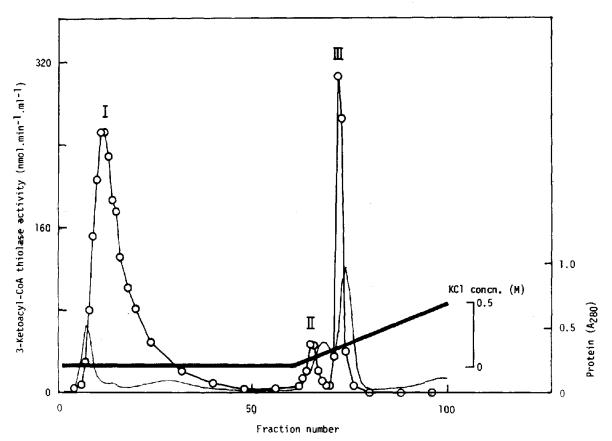


Fig.1. DEAE-Sepharose CL-6B column chromatography of the P₂-S fraction. Volume of each fraction, 5 ml. (**) 3-Ketoacyl-CoA thiolase activity on acetoacetyl-CoA; (**—**), protein; (***—**), KCl concentration.

3. RESULTS AND DISCUSSION

3.1. Induction of 3-ketoacyl-CoA thiolase in Candida tropicalis

The activities of 3-ketoacyl-CoA thiolase in *C. tropicalis* cells grown on *n*-alkanes and glucose were measured with 3-ketoacyl-CoAs of various chain lengths (table 1). The level of the 3-ketoacyl-CoA thiolase activity was several hundred-times higher in alkane-grown cells than in glucose-grown cells with 3-ketoacyl-CoAs of longer chains as substrates, while the level to degrade acetoacetyl-CoA was only about three-times higher in alkane-grown cells. These facts suggested the presence of more than one 3-ketoacyl-CoA thiolase exhibiting the different substrate specificity and inducible nature.

3.2. Presence of three 3-ketoacyl-CoA thiolases

P₂ fraction containing peroxisomes and mitochondria was treated with a vortex-mixer under hypotonic conditions (50 mM potassium phosphate buffer, pH 7.2) in the presence of 10% (w/v) glycerol, 1 mM dithiothreitol and 0.2 mM phenylmethylsulfonyl fluoride to solubilize the enzymes, and centrifuged at 127 000 \times g for 1 h. The supernatant obtained (P₂-S) was applied to a DEAE-Sepharose CL-6B column (2.2 \times 17 cm) equilibrated with 50 mM potassium phosphate buffer (pH 7.2) containing 10% glycerol and 1 mM dithiothreitol, and proteins were eluted with a linear concentration gradient of KCl (fig.1). Three peaks of the 3-ketoacyl-CoA thiolase activity (I, II and III) were obtained with acetoacetyl-CoA as the substrate. A similar result was also obtained by the chromatography of the peroxisomal fraction after the subcellular fractionation (not shown). Respec-

Table 2
Substrate specificity of 3-ketoacyl-CoA thiolases I, II and III

Substrate		Thiolase	:
	I	II	III
Acetoacetyl-CoA	1	1	1
3-Ketohexanoyl-CoA	0.01	6.7	8.3
3-Ketooctanoyl-CoA	0.01	11	33
3-Ketodecanoyl-CoA	0.02	14	46
3-Ketododecanoyl-CoA	0.02	13	47

The respective enzyme activities on acetoacetyl-CoA are expressed as 1 (unit) tive thiolase activities in the P₂-S fraction were as follows: I, 14; II, 0.86; III, 3.3 (μ mol · min⁻¹) using acetoacetyl-CoA as the substrate; and I, 0.14; II, 9.5; III, 110 (µmol·min⁻¹) using 3-ketooctanoyl-CoA as the substrate. The ratio of respective thiolase activities to acetoacetyl-CoA 3-ketooctanoyl-CoA revealed that the contribution of thiolase II activity must be very low. Table 2 shows that thiolase I was specific only to acetoacetyl-CoA, while thiolases II and III had high activities for 3-ketodecanoyl-CoA and 3-ketododecanoyl-CoA. These results indicate that thiolase I and thiolases II and III are classified to different types of the enzymes.

3.3. Peroxisomal thiolases I, II and III

The subcellular localization of thiolases I, II and III was examined by using acetoacetyl-CoA and 3-ketooctanoyl-CoA as the substrates. Fig. 2 shows that the distribution of the respective activities of 3-ketoacyl-CoA thiolase to acetoacetyl-CoA and 3-ketooctanoyl-CoA corresponded to that of catalase, a marker enzyme of peroxisomes. These results, together with those obtained from the DEAE-Sepharose CL-6B column chromatography of the peroxisomal fraction, have demonstrated that thiolases I, II and III were peroxisomal enzymes. In the mitochondrial fraction, containing cytochrome oxidase as a marker, no significant peak of the thiolases was found (not shown). 3-Ketoacyl-CoA thiolase recovered in the cytosolic fraction (S2) was only specific to acetoacetyl-CoA, although we have no information on its function.

In conclusion, thiolase I was a typical acetoacetyl-CoA thiolase and thiolases II and III were 3-ketoacyl-CoA thiolases having high activities to longer chain 3-ketoacyl-CoAs. Thiolase III of the two 3-ketoacyl-CoA thiolases seems to be mainly responsible for the degradation of fatty acids derived from n-alkanes of long chains, while the degradation of acetoacetyl-CoA is carried out preferentially by thiolase I, thus the fatty acid β -oxidation cycle completely operating in the yeast peroxisomes. The presence of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase in the yeast peroxisomes will be noticeable in studying the evolution of fatty acid metabolism.

Acknowledgment: This work was supported in part by a Grantin-Aid for Research from the Ministry of Education, Science and Culture, Japan.

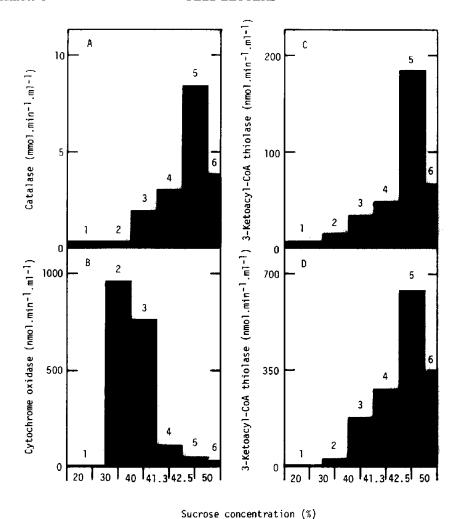


Fig.2. Particulate localization of enzymes in the P₂ fraction. The experimental procedures were described in the previous paper [6]. The volume of each fraction was as follows: 1, 3.75 ml; 2-5, 2.5 ml each; 6, 1.25 ml. (A) Catalase; (B) cytochrome oxidase; (C) 3-ketoacyl-CoA thiolase measured with acetoacetyl-CoA as the substrate; (D) 3-ketoacyl-CoA thiolase measured with 3-ketoactanoyl-CoA as the substrate.

REFERENCES

- Lazarow, P.B. and De Duve, C. (1976) Proc. Natl. Acad. Sci. USA 73, 2043-2046.
- [2] Masters, C. and Crane, D. (1984) Trends Biochem. Sci. 9, 314-317.
- [3] Miyazawa, S., Osumi, T. and Hashimoto, T. (1980) Eur. J. Biochem. 103, 589-596.
- [4] Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T. and Ui, N. (1981) J. Biochem. 90, 511-519.
- [5] Kawamoto, S., Nozaki, C., Tanaka, A. and Fukui, S. (1978) Eur. J. Biochem. 83, 609-613.
- [6] Ueda, M. Yamanoi, K., Morikawa, T., Okada, H. and Tanaka, A. (1985) Agric. Biol. Chem. 49, 1821-1828.

- [7] Shimizu, S., Yasui, K., Tani, Y. and Yamada, H. (1979) Biochem. Biophys. Res. Commun. 91, 108-117.
- [8] Ueda, M., Morikawa, T., Okada, H. and Tanaka, A. (1987) Agric. Biol. Chem. 51, 2197-2205.
- [9] Ueda, M., Okada, H., Tanaka, A., Osumi, M. and Fukui, S. (1983) Arch. Microbiol. 136, 169-176.
- [10] Staak, H., Binstock, J.F. and Schulz, H. (1978) J. Biol. Chem. 253, 1827-1831.
- [11] Fukui, S., Kawamoto, S., Yasuhara, S., Tanaka, A., Osumi, M. and Imaizumi, F. (1975) Eur. J. Biochem. 59, 561-566.
- [12] Seubert, W., Lamberts, I., Kramer, R. and Ohly, B. (1968) Biochim. Biophys. Acta 164, 498-517.
- [13] Schulz, H. (1974) J. Biol. Chem. 249, 2704-2709.